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In recent years, the importance of smart contract security has been heightened by the increasing number of

attacks against them. To address this issue, a multitude of static application security testing (SAST) tools have

been proposed for detecting vulnerabilities in smart contracts. However, objectively comparing these tools

to determine their e�ectiveness remains challenging. Existing studies often fall short due to the taxonomies

and benchmarks only covering a coarse and potentially outdated set of vulnerability types, which leads to

evaluations that are not entirely comprehensive and may display bias.

In this paper, we �ll this gap by proposing an up-to-date and �ne-grained taxonomy that includes 45

unique vulnerability types for smart contracts. Taking it as a baseline, we develop an extensive benchmark

that covers 40 distinct types and includes a diverse range of code characteristics, vulnerability patterns, and

application scenarios. Based on them, we evaluated 8 SAST tools using this benchmark, which comprises

788 smart contract �les and 10,394 vulnerabilities. Our results reveal that the existing SAST tools fail to

detect around 50% of vulnerabilities in our benchmark and su�er from high false positives, with precision not

surpassing 10%. We also discover that by combining the results of multiple tools, the false negative rate can be

reduced e�ectively, at the expense of �agging 36.77 percentage points more functions. Nevertheless, many

vulnerabilities, especially those beyond Access Control and Reentrancy vulnerabilities, remain undetected.

We �nally highlight the valuable insights from our study, hoping to provide guidance on tool development,

enhancement, evaluation, and selection for developers, researchers, and practitioners.

CCS Concepts: • Software and its engineering → Software maintenance tools; • Security and privacy

→ Software security engineering.
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1 INTRODUCTION

As smart contracts gain prominence in the blockchain technology landscape, their secure and
e�cient implementation becomes increasingly crucial. These self-executing digital agreements
automate transactions and enforce contract terms, but they are not immune to vulnerabilities and
errors. It was reported that security vulnerabilities in smart contracts have resulted in more than
$4.75 billion in �nancial losses from 2012 to 2022 [17]. Therefore, ensuring the reliability and security
of smart contracts is essential to safeguard the trustworthiness of decentralized applications.
To this end, a wide array of techniques have been proposed to detect vulnerabilities such as

integer over�ow/under�ow. These approaches can be broadly classi�ed into categories including
static application security testing (SAST) [19, 23, 36, 66, 67, 69] performing analysis without running
the programs and dynamic application security testing (DAST) [15, 29], which involves testing the
contracts with various inputs either in simulated environments before deployment or by executing
the code post-deployment. Given the immutable nature of smart contracts, early vulnerability
detection is of paramount importance [3]. Compared with DAST, SAST provides more immediate
and comprehensive insights, particularly during the coding phases.
It is necessary to clearly understand the detection capability of current existing SAST tools

for di�erent stakeholders such as tool developers, researchers, and practitioners. However, it still
remains challenging to objectively compare these SAST tools to determine their e�ectiveness.
Existing studies [20, 23, 25, 66] have demonstrated the e�ectiveness of some tools through a series
of evaluations on their own experimental scenarios, but their limitations on evaluation settings: 1)
Lack of an up-to-date and �ne-grained taxonomy. Taxonomies [20, 25, 44, 66, 76] are typically
employed before the comparison and evaluation of SAST tools, which contributes to constructing
benchmarks and testing tools. Nonetheless, existing taxonomies in [13, 20, 25, 38, 76] exhibit limi-
tations in an outdated and coarse classi�cation of vulnerabilities. For example, Durieux [20] noted
that the state-of-the-art DASP Top 10 [38] taxonomy, comprising 10 coarse vulnerability types,
might not su�ciently cover all vulnerabilities a�ecting smart contracts. As for Smart Contract
Weakness Classi�cation (SWC) [65], despite comprising 37 entries, a considerable portion is primar-
ily associated with code quality issues, such as SWC-103: Floating Pragma. Meanwhile, DASP Top
10, proposed in 2016 and last updated in 2018, includes vulnerabilities including Short Addresses that
are now obsolete due to the introduction of corresponding security countermeasures. Additionally,
existing taxonomies su�er from ambiguous classi�cation and unreasonable granularity. Concretely,
there are overlaps in DASP Top 10 between types, leading to ambiguities in classi�cation (see § 3.2).
2) Lack of a comprehensive benchmark. The benchmarks used in existing studies [20, 25] su�er
from issues such as small sizes or limited vulnerability types. The use of these non-comprehensive
benchmarks may result in varying evaluation conclusions. Ren et al. [44] concluded that evalua-
tion results are highly reliant on benchmark suites, causing the e�ectiveness of Slither [23] and
SmartCheck [66] to vary across three distinct benchmarks due to the limitations in vulnerability
types and code characteristics within these benchmarks. These limitations within benchmarks
contribute to evaluation conclusions that may be neither objective nor fair. Additionally, due to the
limitations within their benchmarks, while most related work [20, 25] used evaluation metrics such
as Precision or Recall, they generally evaluated only partial metrics, which also hinders objective
evaluation conclusions.
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Fig. 1. Overview of our study.

Therefore, as shown in Figure 1, to tackle the above-mentioned challenges and problems, we �rst
developed an up-to-date and �ne-grained vulnerability taxonomy for smart contracts, including 45
unique types, which is based on existing taxonomies including DASP Top 10, SWC, the vulnerability
identi�ers used in SAST tools, as well as our domain knowledge. This uni�ed and up-to-date
taxonomy facilitates the construction of our benchmark. We further collected and constructed a
systematic and diverse benchmark suite by collecting existing high-quality datasets including [20, 25,
44, 68]. Meanwhile, to enhance the benchmark’s diversity and provide amore realistic representation
of real-world projects, we also collected 2,941 representative industrial smart contract projects
from BscScan [8].

Notably, since some of these datasets only label partial vulnerabilities or do not disclose labeling
information, we took substantial e�orts (11 person-months) to manually label the ground truth by
involving three security auditors to label and map them to our taxonomy at the function level. In
total, our benchmark includes 788 smart contract �les and 10,394 vulnerabilities (ground truth),
which also covers almost all vulnerability types in our proposed taxonomy and includes a wide
range of code characteristics, vulnerability patterns, and application scenarios.

Based on the new taxonomy and benchmark, we selected 8 representative SAST tools for smart
contracts to compare and evaluate them. Concretely, 1) to explore and observe the detection
coverage of each tool, we mapped their vulnerability identi�ers to our proposed taxonomy. 2)
To investigate the e�ectiveness of these tools, we conducted a benchmark experiment on our
benchmark by adopting more fair runtime parameters and evaluation metrics, i.e., Recall, Precision,
and F1-score. 3) We also performed a consistency evaluation to observe the potential for combining
multiple tools. 4) Finally, we evaluated the e�ciency of these tools by observing their time cost in
analyzing all of the smart contracts in our benchmark.
Through our study, we have discovered the following key �ndings: 1) CSA1 and Securify2

display higher vulnerability coverage than other tools. 2) Regarding e�ectiveness, CSA maintains
its top position in both recall and precision, while Slither’s performance drops due to a higher
false positive rate. However, the existing tools still miss around 50% cases in our benchmark, with
precision not surpassing 10%. 3) For the consistency analysis, tool combination can e�ectively
reduce the false negatives to 29.3%, at the expense of �agging 36.77 percentage points more functions.
Additionally, vulnerabilities related to Access Control and Reentrancy are generally easier for tools
to detect than those in the Arithmetic category. 4) Our e�ciency analysis shows that tools using

1The anonymous commercial static analysis tool we evaluated.
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symbolic execution take more time compared to those with static analysis techniques. Speci�cally,
Manticore takes the longest time for analysis, and Securify2 demands more memory resources,
while SmartCheck emerges as the fastest tool among those evaluated.

In summary, our main contributions are as follows:

• We proposed a new vulnerability taxonomy for smart contracts, based on existing taxonomies,
the vulnerability identi�ers used in SAST tools, and our domain knowledge.

• We constructed a comprehensive and diverse benchmark of 788 smart contracts, uncovering
10, 394 vulnerabilities at the function level. The meticulous e�ort to establish this ground
truth took 11 person-months, making it the largest benchmark dedicated to smart contract
vulnerabilities to date.

• We conducted a benchmark experiment of 8 SAST tools using our diverse benchmark and
performed a large-scale experiment on 8,981 smart contracts (i.e., 8 × (788 + 8, 981) = 78, 152

scanning tasks). This preparation and execution process took over 4 months. We performed
an extensive and rigorous empirical evaluation of 8 existing SAST tools from a comprehensive
perspective including coverage, e�ectiveness, consistency, and e�ciency. The study data and
code are released on the website: https://sites.google.com/view/sc-sast-study-fse2024/home.

2 RELATED WORK

2.1 Empirical Study on SAST Tools for Smart Contracts

There has been extensive research conducted to evaluate security tools for smart contracts. Ghaleb
and Pattabiraman [25] proposed an automated approach, SolidiFI, to evaluate static analyzers
for smart contracts by injecting code defects into 50 smart contracts, introducing 9,369 security
vulnerabilities, and testing the generated buggy contracts using six static analyzers. Rameder [43]
conducted a systematic literature and tool review, providing a comprehensive overview of tools,
classi�cations of smart contract vulnerabilities, and detection methods including fuzzing, formal
methods, and static analysis. Durieux et al. [20] presented an empirical evaluation of nine ana-
lyzers based on 69 annotated vulnerable smart contracts and another 47,518 contracts without
ground truth. However, our work aims to conduct a systematic evaluation of static analyzers by
constructing a more diverse benchmark (ground truth) and evaluating them frommulti-dimensional
perspectives including coverage and granularity, e�ectiveness, consistency, and e�ciency. Ren et
al. [44] proposed a uni�ed standard that includes a 4-step evaluation process to eliminate bias in
the assessment process. They evaluated nine representative tools based on 46,186 source-available
smart contracts collected from four in�uential organizations. While they emphasized that experi-
ment setups can lead to di�erent or even incorrect conclusions during the evaluation, they did not
systematically compare the detection capacities of the tools. Monteiro [35] introduced SmartBugs,
an extendable execution framework that includes 47,661 Solidity smart contracts, and presented an
evaluation of seven state-of-the-art tools. The tool evaluation framework they proposed contributes
to our research on running security tools for Solidity smart contracts. However, the taxonomies
they used are outdated or incomplete, which will be discussed in § 3.2.
Another related work was proposed by Chen et al. [13], in which they collected and analyzed

smart-contract-related posts and real-world smart contracts, de�ning 20 types of contract defects
that impact smart contract quality. However, they did not compare or evaluate any security tools.
We do not merely construct a systematic taxonomy for smart contract vulnerabilities and further
collect a comprehensive benchmark, but evaluate the performance of eight static analyzers based
on the diverse vulnerability types. Zhou et al. [77] constructed a DeFi reference framework that
categorizes 77 academic papers, 30 audit reports, and 181 incidents, revealing di�erences between
the academic and practitioner communities in defending and examining incidents. Their results
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show that DeFi security is still in its infancy and that many potential defense mechanisms require
further research and implementation. Meanwhile, Chaliasos [11] also focused on DeFi attacks,
evaluating automated security tools and surveying 49 smart contract developers and auditors. They
underlined the limited e�ectiveness of current tools in detecting high-impact vulnerabilities, with
only 8% of the attacks in their dataset being detected by automated tools. This emphasizes that
smart contracts and DeFi security still have signi�cant room for improvement. While reentrancy
vulnerabilities can be detected, existing tools struggle to address logic-related bugs and protocol-
layer vulnerabilities. Contrasting their work, our study focuses on vulnerabilities beyond DeFi
attacks, as DeFi vulnerabilities are typically business-logic-related and considered too challenging
for static analyzers to detect e�ectively. Akca et al. [1] evaluated various techniques for testing
smart contracts including fuzzing and genetic algorithm rather than static analysis.
Our work distinguishes itself by focusing on conducting a systematic evaluation of SAST tools

for Solidity smart contracts, constructing a comprehensive benchmark, and evaluating the tools
from various perspectives. We aim to provide valuable insights into the performance of these tools
and contribute to the ongoing development and improvement of SAST tools in the context of smart
contract security. In summary, our work di�ers from the state of the art in terms of the considered
(1) vulnerability taxonomies (an up-to-date and �ne-grained vulnerability taxonomy for smart
contracts), (2) evaluation benchmarks (the largest benchmark covering comprehensive and
diverse vulnerability types), (3) evaluation methodology (mapping detection rules and ground
truth to our taxonomy), (4) Finer detection code granularity (vulnerable function-level), and (5)

evaluation perspectives (coverage analysis on supported vulnerabilities, e�ectiveness analysis
on vulnerability detection, consistency analysis among tools’ focuses, and e�ciency analysis).

2.2 SAST Tools for Smart Contracts

Several works focused on detecting vulnerabilities in smart contracts [6, 19, 23, 26, 34, 36, 66, 67, 69],
with some speci�cally targeting certain types of vulnerabilities. Apart from the selected tools we
evaluated, Liao et.al [32] proposed a framework named SmartDagger to detect cross-contract
vulnerability through static analysis at the bytecode level. Besides, Liu et al. [34] proposed mining
past transactions of a contract to recover a probable access control model to identify potential user
permission-related bugs. They implemented their role mining and security policy validation in a
tool called SPCon. Similarly, Ghaleb et al. [26] introduced AChecker to detect permission-related
vulnerabilities by combining data-�ow analysis and symbolic execution techniques. Recently, Fang
et al. [22] developed SoMo which leverages symbolic execution to detect modifier issues.

3 OVERVIEW

In this section, we will introduce the overview of our study design including tool selection (§ 3.1),
taxonomy construction (§ 3.2), dataset collection (§ 3.3), and research questions (§ 3.4), as also
shown in Figure 1.

3.1 Tool Selection

To collect representative SAST tool candidates for smart contracts, we conducted a systematic
literature review (SLR) as follows. 1)We �rst used several keywords such as “smart contract”, “static
analysis”, and “security tool” to search papers published in top-tier Software Engineering, Security,
and Programming Language venues in the last three years (till Sep. 2023), including FSE, ICSE, S&P,
Usenix Security, PLDI, POPL, etc. We obtained 59 research papers related to security for smart
contracts as an initial paper list. 2) By further excluding papers that are unrelated to SAST tools,
we thereby got 14 papers related. We gathered a list of 44 SAST tools. Our selection process was
structured to ensure the relevance and practicality of the tools for our analysis.
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Table 1. List of selected SAST tools. # Baseline: Tool usage as a baseline in 2021-2023. # Stars: GitHub repository
stars. # Citation: Number of citations.

Technology Tool Analysis Level # Baseline # Citation # Stars Publication

Static Analysis

Securify2 Source Code 7 649 529 CCS’18[69]
Slither Source Code 7 244 4.5k WETSEB’19[23]

SmartCheck Source Code 7 481 315 WETSEB’18[66]
CSA Source Code / / / /

Symbolic Execution

Manticore Bytecode 7 185 3.5k ASE’19[36]
Mythril Bytecode 11 / 3.5k White Paper
Osiris Bytecode 6 222 50 ACSAC’18[67]
Oyente Bytecode 8 1897 1.3k CCS’16[19]

Criterion #1 (Availability): The tool should be publicly accessible. Hence, we excluded 16 tools
due to unavailability (commercial or closed-source tools). Notable exclusions in this step included
tools like Zeus [30], Sereum [46], and MythX [37].
Criterion #2 (Security related): We try to select tools that identify security vulnerabilities, rather
than those aimed at detecting code quality issues, we thereby �ltered out 2 linters including
Solhint [60] and Ethlint [21].
Criterion #3 (Generalized SAST tools): We then narrowed our focus to “generalized” SAST tools
since we aim to compare and evaluate tools across various vulnerability types (45 unique ones in
this study). It required the tools to support at least �ve vulnerability types rather than specializing
in a few vulnerability types, such as only aiming at few vulnerabilities within access control (e.g.,
AChecker [26]), DoS (e.g., eTainter [27]), state inconsistency (e.g., SailFish [6]), etc. After this
�ltering, we retained 16 tools but excluded 10 tools. Note that SailFish [6] was excluded since it
only supports 3 vulnerability types.
Criterion #4 (CLI & no additional input need): Next, due to the need for large-scale analysis,
we focused on tools that support CLI and accept source code directly. Based on it, we excluded
4 tools including teEther [31], SmarTest [58], NPChecker [70], and SmartPulse [62] from our list
since they required additional inputs like speci�cations, transactions, or test cases.
Criterion #5 (Popularity and relevance): In the �nal step, we considered several quantitative
metrics that re�ect their impact, adoption, and relevance in the research community and among
practitioners. Speci�cally, we investigated ① the frequency of employed as baselines in relevant
studies over the recent three years (# Baseline), ② the citations they receive (# Citation), and ③ the
number of stars in their GitHub repositories (# Stars) till September 2023. We thereby got 7 tools
that are both more popular and relevant in the �eld.

According to the uni�ed criteria above, we �nally got 7 open-source SAST tools: Securify2 [10],
Slither [23], SmartCheck [66], Manticore [36], Mythril [16], Osiris [67], and Oyente [19] (see Table 1).
The detailed process of each step can be accessed on our website [72]. Meanwhile, to observe the
gap in e�ectiveness between open-source and commercial tools, we try to include commercial tools
for smart contracts. However, due to the signi�cant �nancial expenses, it is not feasible to run
multiple commercial tools on our extensive dataset (8,981 contract �les). We �nally successfully
obtained access to a commercial static analysis tool (CSA) through our industrial partner.
Selected tools. As displayed in Table 1, the selected tools leverage state-of-the-art analysis tech-
niques and were frequently compared or evaluated in recent works [6, 20, 22, 25, 26, 30, 44, 76]
and/or are popular among practitioners [12].
Securify2 (★ 529) is a successor for Securify security scanner [9, 69], while the latter is deprecated
since 2020. In our study, we use version v2.0.
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Slither (★ 4.5k) is a static analysis framework developed by Trail of Bits [39]. It converts Solidity
smart contracts into an intermediate representation (IR) called SlithIR and applies Static Single
Assignment (SSA) [2, 18, 47] to perform data �ow analysis, as well as taint tracking to extract and
re�ne information. In our study, we use version v0.9.3.
SmartCheck (★ 315) is a static analysis tool developed by SmartDec [57]. It uses lexical and
syntactical analysis performed on Solidity source code to look for vulnerabilities. We use v2.0 of
SmartCheck here.
CSA refers to (Commercial Static Analysis), which uses static analysis technique to �nd vulnerabil-
ities in smart contracts and is the commercial tool used in this study. Similar to the other tools,
we make sure to use one of the latest versions of CSA. To protect the company behind this tool,
we anonymize its name and neither reveal its exact version and release date nor the implemented
analysis technique.
Manticore (★ 3.5k) is a symbolic execution tool for smart contracts. And it is integrated with
Z3 [45] which is a powerful theorem prover and solver for satis�ability modulo theories (SMT) [4]
problems. We use version v0.3.7 here.
Mythril (★ 3.5k) is developed by ConsenSys [37]. It performs symbolic execution for smart contracts,
relying on taint analysis, and control �ow analysis of the EVM bytecode to prune the search space
and to look for values that allow exploiting vulnerabilities. We use version v0.23.15.
Osiris (★ 50) was developed based on Oyente, which detects vulnerabilities in Ethereum smart
contracts. Here, we use version #d1ecc37.
Oyente (★ 1.3k) is the earliest academic tool in this domain, and it is still continuously used in
evaluations of numerous academic work [12, 14, 20, 25, 26, 29, 33, 42, 44, 50, 73, 76]. It performs
symbolic execution for vulnerability detection. And we use version v0.2.7 here.

3.2 Taxonomy Construction

Many taxonomies have been proposed [11, 38, 65, 76] to facilitate vulnerability understanding,
such as DASP Top 10 and SWC. However, they exhibit several limitations: ① Outdated and coarse
types: Existing taxonomies may lack newly discovered vulnerability types or retain outdated types.
For instance, DASP Top 10 [38], used by Durieux [20], was proposed in 2016 and last updated in
2018, leading to outdated types such as the “Short Addresses” issue, which has been resolved by the
Solidity compiler from v0.5.0. Moreover, SWC was established in 2017 and contains only 37 types
of weaknesses, many of which focus on code quality rather than severe security risks. ② Ambiguous
classi�cation and unreasonable granularity: Some taxonomies exhibit overlaps between categories,
leading to ambiguities in classi�cation. For example, the taxonomy used by [38] shows overlaps
between categories such as Access Control and Unchecked Low-Level Calls, which might result in
confusion when categorizing vulnerabilities. Furthermore, the limitations in existing taxonomies
make it challenging to establish a reliable benchmark for evaluating the actual performance of
SAST tools or techniques in addressing smart contract vulnerabilities. For instance, the datasets
used in [20, 25], and [35] are limited in benchmark sizes or vulnerability types, which lead to
incomparable results and hinder the evaluation of the tools’ e�ectiveness in vulnerability detection.
Hence, an up-to-date and �ne-grained taxonomy of known smart contract vulnerabilities is

essential. This foundation allows for more objective and reliable comparison and evaluation of
tools in the domain. To address this, we constructed a new vulnerability taxonomy for smart
contracts from �ve perspectives as follows: ① We began by addressing the outdated nature of
existing taxonomies, such as the DASP Top 10 and SWC. We removed outdated categories like
the Short Addresses and added newly discovered vulnerability categories Storage and Memory to
ensure a comprehensive representation of known smart contract vulnerabilities. ② We reorganized
the taxonomy by analyzing the root causes of vulnerabilities, such as those in Block Manipulation
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and Cryptographic, to create a more structured approach in line with the ETSI smart contract
standard. ③ To resolve ambiguity and granularity issues in existing taxonomies, we combined
overlapping categories and carefully analyzed their parent-child relationships. This step was to
diminish ambiguity and redundancy, ensuring a clear and concise classi�cation of vulnerabilities. ④
Meanwhile, to ensure our taxonomy’s relevance and practicality, we also considered the supported
vulnerability types among state-of-the-art SAST tools by examining their vulnerability identi�ers
and aligning them with the categories in our taxonomy. This step was crucial to guarantee the
applicability of our taxonomy to real-world tools and practices. ⑤ Lastly, since our primary concern
is vulnerabilities in smart contracts, we removed entries related solely to code quality.
In summary, as shown in Table 2, our taxonomy extends and re�nes the existing taxonomies

including DASP Top 10 and SWC by addressing their limitations and reorganizing the structure for
a more precise representation of smart contract vulnerabilities. In total, our proposed taxonomy
encompasses 45 vulnerability types, organized into 7 distinct categories. Due to space limitations,
details on our taxonomy can be accessed on our website [71].

3.3 Dataset Collection

3.3.1 Benchmark Construction. To create a diverse benchmark covering as many vulnerability
types as possible from our taxonomy for a thorough SAST tools evaluation, we de�ned three criteria
for collecting datasets as follows:
Criterion #1 (Solidity smart contracts and availability): The benchmark must consist of
open-source Solidity smart contracts. Since our evaluation focuses on tools speci�cally designed
for Solidity, it is essential to collect appropriate language datasets that are readily available. We
identi�ed 19 open-source datasets that ful�ll this requirement.
Criterion #2 (Popularity or peer-reviewed): The benchmark should be either widely used or
peer-reviewed. This ensures that the dataset has been recognized and applied in related research
papers, demonstrating its relevance and validity in the research community. We thereby included 7
benchmarks including [13, 25, 44, 55, 56, 68, 76].
Criterion #3 (Labeled vulnerability types): This criterion covers two aspects: ① The benchmark
should primarily focus on vulnerabilities, and ② the ground truth should be labeled at least at the
�le level. As we aim to gather high-quality datasets and further label them at the function level, we
excluded 3 benchmarks with no ground truth or labeled only at the project level, such as [13, 55, 76].
Finally, we obtained 4 available benchmarks [25, 44, 56, 68].
Furthermore, we tried to collect more real-world vulnerable smart contracts. To this end, we

focused on selecting representative BNB projects from BscScan [8]. To obtain a representative
sample, we �rst gathered the top 3,000 BNB projects ranked by their Market Capitalization (Market

Cap) and Liquidity Value (Liquidity) as indicators. Market Cap re�ects a project’s total market
value, indicating its prominence and adoption. Liquidity re�ects the ease of trading a project’s
token, with higher values suggesting more accessible and stable markets. By selecting projects with
high Market Cap and Liquidity, we ensured our dataset includes prominent and widely-used BNB
contracts. After �ltering out unavailable contracts, we obtained 2,941 addresses corresponding to
2,941 unique projects. We eventually got 2,941 representative BNB projects containing 8,249 smart
contract �les, focusing speci�cally on those with a Market Cap greater than $3,000 and the average
Liquidity of $1,632,386, respectively. After this process, we collaborated with our industrial partner
by engaging 3 security audit experts to construct the ground truth. We identi�ed 120 vulnerabilities
a�ecting 113 contracts from these BNB projects (function level) .
To remove duplicates from all �ve datasets within our benchmark suite, we checked the MD5

checksums of the contract �les after eliminating blank lines and comments, a method commonly
used in related studies [20, 63]. In the end, we obtained 8,981 unique contract �les. Among these,
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Table 2. Our proposed vulnerability taxonomy for smart contracts (# Types indicates the number of types in
each category. “∗” indicates types not included in our benchmark. A “✓” indicates support by tools for a given
type, followed by the number of detected samples from our benchmark. # Samples indicates the total count
of vulnerability samples for each type within our benchmark. # SWC: the number of SWC entries mapped. #
Supported: the number of types mapped. ).
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Arbitrary from in transferFrom() without msg.sender Check ✓(11) ✓(15) 17
Call to Arbitrary Addresses with Unchecked Call data ✓(1) ✓(1) 1

Caller Not Checked ✓(2) ✓(5) ✓(10) 11
Logic Contract Could be Destructed∗ ✓ ✓ -

Dangerous Immediate Initialization of State Variables ✓(10) ✓(9) 12
Dangerous Usage of tx.origin ✓(905) ✓(1,169) ✓(1,271) ✓(244) 1,371

Default Function Visibility ✓(24) ✓(20) ✓(2) 29
Initializing Method without Permission Check ✓(0) ✓(0) ✓(1) 5

Method permit() Used for Arbitrary from in transferFrom() ✓(0) ✓(1) ✓(2) 6
Missing msg.sender Check for transferFrom() ✓(0) ✓(0) ✓(2) 7

Missing Input Validation (Call Inject) ✓(0) ✓(13) ✓(12) ✓(0) 24
Sending Ether to Arbitrary Destinations ✓(0) ✓(26) ✓(46) ✓(0) 56

Unprotected Contract Destruction ✓(0) ✓(4) ✓(13) ✓(16) ✓(0) ✓(2) ✓(1) ✓(1) 19
Unprotected Ether Withdrawal ✓(2) ✓(36) ✓(40) ✓(48) ✓(0) ✓(16) 67

Unsafe Delegatecall ✓(0) ✓(3) ✓(1) ✓(0) ✓(0) ✓(0) 8
Unused Return Value ✓(0) ✓(0) ✓(0) ✓(3) ✓(0) ✓(0) 6

Usage of Public Mint or Burn ✓(0) ✓(1) ✓(3) ✓(6) 6

Access Control (18)

Write to Arbitrary Storage Location ✓(0) ✓(2) ✓(0) ✓(2) ✓(0) 6

Inappropriate Integer Division before Multiplication ✓(0) ✓(8) ✓(2) ✓(0) ✓(1) 10
Integer Over�ow/Under�ow ✓(0) ✓(1) ✓(645) ✓(0) ✓(44) ✓(325) ✓(91) 1,976Arithmetic (3)

Unsafe Array Length Assignment ✓(0) ✓(2) ✓(0) ✓(4) 6

Dangerous Usage of block.timestamp ✓(370) ✓(1,108) ✓(1,132) ✓(0) ✓(210) ✓(4) ✓(0) 1,139
Transaction Order Dependency ✓(1,231) ✓(479) ✓(1,970) ✓(0) ✓(0) ✓(0) 2,687Block Manipulation (3)

Weak PRNG (Pseudorandom Number Generator) ✓(1) ✓(15) ✓(1) ✓(23) ✓(0) 60

Lack of Proper Signature Veri�cation ✓(0) ✓(0) ✓(1) 1
Cryptographic (2)

Signature Malleability ✓(1) ✓(0) 1

transfer() and send() with Hardcoded Gas Amount ✓(0) ✓(0) ✓(7) ✓(0) 4
Contract Could Lock Ether ✓(50) ✓(69) ✓(82) 92
DoS with Block Gas Limit ✓(0) ✓(0) ✓(0) 8
DoS With Failed Call ✓(0) ✓(0) ✓(10) ✓(2) ✓(0) ✓(0) 15

Force Sending Ether with this.balance Check ✓(0) ✓(0) ✓(0) 1

Denial of Services (6)

Unsafe send() in the require() Condition ✓(833) ✓(0) ✓(8) ✓(743) ✓(0) ✓(0) 1,269

Reentrancy Vulnerability with Negative Events ✓(13) ✓(111) ✓(119) 124
Reentrancy Vulnerability with Transfer ✓(37) ✓(201) ✓(201) ✓(227) ✓(0) ✓(45) ✓(20) ✓(5) 227

Reentrancy Vulnerability with Same E�ect ✓(69) ✓(276) ✓(297) 331
Reentrancy Vulnerability with Token Transfer ✓(83) ✓(450) ✓(513) ✓(0) ✓(53) ✓(27) ✓(27) 525

Reentrancy (5)

Reentrancy Vulnerability without Token Transfer ✓(34) ✓(190) ✓(218) 227

Arbitrary Function Jump via Inline Assembly∗ ✓ -
Bytes Variables Risk∗ ✓ ✓ -

Dangerous Usage of msg.value inside a Loop∗ ✓ ✓ ✓ -
Error-prone Assembly Usage ✓(0) ✓(0) ✓(0) ✓(0) 1

Memory Manipulation ✓(0) ✓(0) ✓(1) 2
Modifying Storage Array by Value∗ ✓ ✓ ✓ -

Payable Functions Using delegatecall inside a Loop ✓(0) ✓(0) ✓(1) 2

Storage & Memory (8)

Uninitialized variable ✓(0) ✓(23) ✓(0) ✓(31) 35

# SWC 16 17 8 32 8 14 8 6 -

# Supported 37 43 14 44 11 17 8 7 -

there are 788 vulnerable contract �les containing 10,394 vulnerabilities at the function level (refer
to Table 2 and Table 3 for details).

Table 3. The composition of our benchmark. MI denotes
manually injected vulnerabilities and RW for real-world vul-
nerabilities.

Datasets # Files
# Vulnerabilities

Source
MI RW

Not So Smart Contracts 18 % 18 Trail of Bits [68]

Smartbugs-Curated 143 % 257 ICSE’20 [56]

SolidiFI Benchmark 300 9,606 % ISSTA’20 [25]

Smart Contract Benchmark Suites 214 % 393 ISSTA’21 [44]

BNB Benchmark 113 % 120 BscScan [8]
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Fig. 2. Distribution of vulnerabilities
by category in our benchmark.
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3.3.2 Mapping Vulnerability Identifiers and Benchmark Data to Our Taxonomy. To automatically
evaluate these tools, one challenge we faced was that SAST tools use di�erent vulnerability iden-
ti�ers for their supported vulnerability types. For example, Mythril employs SWC entries in its
reported issues, while others introduce their own vulnerability identi�ers. This disparity makes
it di�cult to automatically determine whether a SAST tool detected a speci�c vulnerability type.
Hence, we tried to map their vulnerability identi�ers to the uni�ed vulnerability types in our taxon-
omy. This required a thorough review of the vulnerability identi�ers, descriptions, and associated
source code provided by each tool. Furthermore, although the four datasets we collected have
already classi�ed the vulnerability data, the vulnerability categories and types di�er since they
use di�erent taxonomies. Additionally, some of them [44, 68] specify the vulnerability location at
the �le level. To conduct a much fairer evaluation, we relabeled and remapped these vulnerability
ground truths to our proposed vulnerability taxonomy at the function level. To ensure accuracy and
minimize potential noise during this phase, we involved three security auditing experts for manual
cross-validation of the data. In total, it took us 7.5 person-months to relabel and map the entire
benchmark. An additional 3.5 person-months were spent on mapping vulnerability identi�ers and
cross-validating the mapping results (details in § 5.2.2).
As displayed in Table 2 and Figure 2, our benchmark has a nearly complete vulnerability type

coverage (88.9%, 40/45) on the proposed vulnerability taxonomy. Importantly, we attempted to
incorporate test cases for the missing �ve vulnerability types from real-world industrial BNB
projects; however, we were unable to locate any suitable examples. Our industry auditing experts
con�rm that the lack of these vulnerability types in our benchmark is due to their rare occurrence
in practical projects. This observation further underscores the benchmark’s alignment with the
contemporary landscape of smart contract vulnerabilities. Meanwhile, the distribution of vulner-
ability samples presented in Table 2 reveals notable skew, with certain types represented by a
signi�cantly larger number of samples. This was primarily attributed to the inclusion of the SolidiFI
Benchmark [25]. Despite the observed skew, the decision to include the SolidiFI Benchmark was
driven by the lack of available alternatives. This made SolidiFI Benchmark an essential choice for
our study, ensuring a broad and valuable dataset for our analysis . To the best of our knowledge, it
is the largest smart contract vulnerability benchmark in Solidity (ground truth) at the

function level.

3.4 Research �estions

Based on the selected tools, proposed taxonomy, and our benchmark, we aim to answer the following
research questions (RQs):

3.4.1 RQ1: Coverage Analysis. Towhat extent do existing SAST tools support di�erent vulnerability
types?

This RQ �rst explores the actual coverage of these generalized SAST tools across the vulnerability
types de�ned in our taxonomy (§ 3.2). We assess the tools’ detection capabilities to understand
their comprehensiveness in identifying a wide spectrum of vulnerabilities. To this end, we leverage
the previously established mapping of vulnerability identi�ers to our taxonomy in § 3.3.2, aiming
to quantify the e�ectiveness of these tools in safeguarding smart contracts against diverse security
threats. Additionally, we provide the number of SWC entries to which the vulnerability identi�ers
can be mapped (i.e., # SWC in Table 2). To quantitatively evaluate the scope of vulnerabilities

supported by each tool against our taxonomy, we de�ne Coverage (=
# Supported vulnerability types

# Vulnerability types in our taxonomy )

to measure the proportion of vulnerability types within our taxonomy that a tool claim to identify.
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3.4.2 RQ2: E�ectiveness Analysis. How e�ective are these SAST tools in detecting vulnerabilities
on our benchmark?
This RQ is addressed from two angles: 1) The capability of current tools to e�ectively analyze

our benchmark, and 2) the number of vulnerabilities identi�ed within our benchmark by these
tools. For the initial aspect, we conducted a comprehensive review of the outcomes of the analyses,
categorizing them into three distinct groups based on their performance: Successful scans, Scans
that failed due to timeouts, and Scans that failed due to compilation issues. Regarding the second
aspect, we enumerated the vulnerabilities detected across various types within our taxonomy.

Subsequently, we calculated Recall ( )%

)%+�#
), Precision ( )%

)%+�%
), and F1-score ( 2×'420;;×%A428B8>=

'420;;+%A428B8>=
), to

evaluate the e�ectiveness of these tools at function level.
All experiments in this study were performed on a server equipped with 80 vCPUs (Intel®

Xeon® Gold 6248 CPU @ 2.50 GHz ×2) and 188G of RAMs, which uses GNU/Linux Ubuntu 18.04
(64-bit) as the host operating system. To automate the execution of these tools, we extended the
SmartBugs [54] framework and enabled all detectors capable of identifying security vulnerabilities,
as well as leveraging the recommended runtime parameters in [44], in which they proposed a
uni�ed standard to eliminate the bias in the assessment process.

3.4.3 RQ3: Consistency Analysis. This research question focuses on two consistency analyses:
1) Are the detection results consistent among these tools in terms of the detected vulnerability
categories? 2) How e�ective are these SAST tools when combining their detecting results?

Building upon the empirical �ndings from RQ2, this research question aims to dissect the dispari-
ties among tools in their vulnerability detection. By meticulously analyzing both the commonalities
and unique attributes of these tools’ detection capabilities, we aim to shed light on their distinct
strengths and potential shortcomings. This analysis focuses on: ① How these tools vary in detection
rates across vulnerability categories. ② The potential boost in detection when combining tools,
leveraging their individual strengths.

3.4.4 RQ4: E�iciency Analysis. How e�cient are these SAST tools to perform an analysis?
To thoroughly assess the e�ciency of various SAST tools on real-world smart contracts, we

analyze all 8,981 contract �les collected in § 3.3.1. For a robust and reliable evaluation under diverse
conditions, we consider the e�ciency based on all 8,981 contract �les regardless of the success or
failure of the analysis. To ensure robustness and consider potential infrastructure variability, we
performed each performance measurement three times for each tool. The reported results represent
the average of these trials.

4 COMPARISON AND EVALUATION

4.1 RQ1: Coverage Analysis

As depicted in Table 2, the vulnerability coverage varies among tools, despite they are generalized-
focused tools. A noteworthy observation is the signi�cant discrepancy in coverage between the
commercial tool CSA, which supports nearly all types except for “Arbitrary Function Jump via
Inline Assembly” (achieving 97.78%, 44/45), and the open-source tools. Among these, Slither stands
out with the second-highest coverage at 95.56% (43/45), followed by Securify2 at 82.22% (37/45).
This variation, particularly with Oyente showing lower coverage, highlights the impact of tool
maturity on the breadth of supported vulnerability types, with older tools like Oyente lagging in
updates for newer vulnerabilities. Meanwhile, it further illuminates areas requiring attention from
tool developers. Speci�cally, the Storage & Memory and Cryptographic categories present lower
coverage across the board, indicating critical directions for future enhancements. Interestingly,
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Fig. 3. Overall e�ectiveness of each tool on our benchmark.

Slither exhibits comprehensive coverage in these categories, positioning it as a benchmark for
vulnerability detection in these domains.

Finding 1: CSA, Slither, and Securify2 demonstrate the highest coverage across multiple
categories. Slither excels in the Reentrancy and Storage & Memory categories, while CSA stands
out in all categories except for Storage & Memory.

Notably, Slither ranks second in coverage yet misses two prevalent vulnerability types. Specif-
ically, ① in the Arithmetic category, Slither fails to support Integer Over�ow/Under�ow, which
are frequently identi�ed in smart contracts [59]. While the Solidity compiler has built-in checks
for these issues [61] from version v0.8.0 [61], the inclusion of the unchecked keyword allows
developers to bypass these protections for the sake of gas optimization. This bypass reintroduces
potential over�ow/under�ow risks that the compiler’s checks aimed to eliminate. It shows a crucial
gap in Slither’s analysis capabilities. Users should be aware of this when seeking over�ow/under-
�ow analysis, especially where compiler protections might be bypassed. ② Moreover, Slither lacks
rules for detecting Transaction Order Dependence (TOD) vulnerabilities. These vulnerabilities
are a common concern [64, 70, 75] and are supported by all other tools except for Manticore. The
absence of TOD support in them (both developed by Trail of Bits) suggests a potential oversight
and a critical area for improvement.
Other tools, such as Mythril, Manticore, and Osiris, display selective coverage, prioritizing

speci�c vulnerability categories. For instance, Mythril concentrates on Access Control. Meanwhile,
our analysis of tool support revealed that Manticore is equipped with three speci�c vulnerability
identi�ers for “Unsafe Delegatecall” within the Access Control category. This might suggest a
targeted emphasis by Manticore on detecting this particular type of vulnerability. Moreover, despite
having a smaller set of vulnerability identi�ers, Osiris prioritizes the Arithmetic category with
�ve out of its nine vulnerability identi�ers targeting it. It covers four distinct vulnerability types
within this category, demonstrating its granular focus despite limited overall coverage. However,
Oyente and Osiris cover only four categories, potentially limiting their ability to detect a variety of
vulnerabilities across categories.

Finding 2: Other tools, such as Mythril, Manticore, and Osiris, show selective coverage, fo-
cusing on speci�c vulnerability categories. While such focused coverage can lead to detailed
vulnerability identi�cation in those categories, it also results in limited overall coverage.

4.2 RQ2: E�ectiveness Analysis

As shown in Table 4, we �rst investigated the analysis status due to numerous cases where tools
failed to analyze contracts or generate reports. We observed that existing tools primarily analyze
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Table 4. Analysis status overview for each SAST tool. # Success and # Failure indicate the number of contracts
where tools scan successfully and unsuccessfully, respectively. # Timeout indicates the number of contracts
where the tool failed due to exceeding a time limit. # Compilation denotes the number of contracts that could
not be scanned due to compilation errors.

Tool # Success
# Failure

# Timeout # Compilation # Total

Securify2 247 (31.35%) 38 503 541
Slither 767 (97.34%) 2 19 21

SmartCheck 788 (100.00%) 0 0 0
CSA 772 (97.97%) 0 16 16

Manticore 112 (14.21%) 626 50 676

Mythril 590 (74.87%) 193 0 193
Osiris 451 (57.23%) 35 302 337
Oyente 499 (63.32%) 57 232 289

smart contracts by �rst compiling them, except for SmartCheck. However, this approach often
leads to compilation issues, causing the analyzers to fail in their analysis. For instance, Securify2
relies on the compiler version of contracts under examination to generate its Abstract Syntax Tree
(AST), but it is limited to compiler versions between v0.5.* and v0.6.*. As a result, Securify2
fails to analyze contracts developed using other compiler versions. Oyente faces challenges when
analyzing contracts due to its limited support for compiler versions up to v0.4.19. Consequently,
Oyente failed to analyze 232 (29.44%) contracts that were developed using higher solc versions with
di�erent AST structures [74]. Osiris, built on the foundation of Oyente, encountered a “compilation
failed” error on 38.32% (302) contracts as it only supports the Solidity compiler v0.4.21. This
limitation causes Osiris to struggle with contracts written in Solidity versions beyond v0.4.21,
triggering compilation failures and preventing further vulnerability detection, rendering Osiris less
e�cient compared to other analyzers. Interestingly, Manticore faced di�culties in analyzing 626
out of 788 contract �les. More speci�cally, it encountered a timeout in 79.44% (626/788) contracts
and demanded substantial memory resources in our experimental system. Additionally, Manticore
failed to analyze 50 contracts and generated exception errors due to compilation issues. To further
investigate this issue, we focused on the SolidiFI Benchmark, where Manticore failed to analyze
all the 300 contracts: 40 due to compilation issues and 260 due to timeout. For the 260 contracts
that encountered timeouts, we removed the timeout constraint and reran Manticore to evaluate its
detection capacity. However, we observed that over three weeks, Manticore successfully analyzed
only 36 out of 260 contracts without yielding new �ndings. This underscores the practicality of our
one-hour limit by demonstrating its su�ciency even for the most demanding analyses. Additionally,
upon further exploration, we found that 44.25% (50/113) BNB projects encountered compilation
failure when using Securify2, Manticore, and Oyente. We further investigated that tools except
for CSA, Slither, and SmartCheck only support single-�le analysis, resulting in them having no
capacity to scan multiple �les under a project and causing compilation failure, especially when
these projects involve importing other �les.

Finding 3: Some analyzers such as Oyente, Osiris, and Securify2 run deeply tied to the Solidity
compiler version, which can cause analyzing failure when trying to scan smart contracts written
in di�erent versions.

As illustrated in Figure 3, the tools exhibit a wide range of e�ectiveness in vulnerability detection,
with many performing below expectations. CSA stands out in terms of F1-score, with its metrics
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revealing a Recall of 72.00%, Precision of 3.35%, and an F1-score of 6.40%. Slither follows with an
F1-score of 2.38%, Recall of 36.18%, and Precision of 1.23%. Other tools, such as Manticore, show
disappointing results, failing to detect any vulnerabilities in our benchmark, resulting in an F1-score
of 0% due to numerous analysis failures. Interestingly, static analysis (SA) tools generally achieve
better Recall, whereas symbolic execution (SE) tools tend to o�er superior Precision.

Regarding SA tools, Intermediate Representation (IR) has become a cornerstone to translate high-
level source code to actionable, low-level insights. All four SA tools studied (i.e., Securify2, Slither,
SmartCheck, and CSA) employ IR, yet their quality varies. Both Slither and Securify2 harness IR by
compiling the code, allowing them to conduct control �ow graph (CFG) and data �ow graph (DFG)
analyses with enhanced precision [48, 51]. This meticulous compilation-based approach provides a
robust depiction of code behavior during execution. In contrast, SmartCheck adopts ANTLR [41]
to directly transform Solidity code into an XML-based IR [66]. This non-compilation approach
enhances its analysis success rate, as it sidesteps potential compilation challenges mentioned before.
However, the trade-o� is its abstracted IR, which may lack the granularity to capture all code
intricacies. This is underscored by SmartCheck’s performance on the SolidiFI Benchmark: while
it detects an average of 1, 490 vulnerabilities per contract, its precision stands at a mere 0.65%.
This highlights the balance between the detailed methods of Slither and Securify2 versus the more
generalized but potentially less precise approach of SmartCheck.
Generally, these SA tools struggle with high false positives, resulting in an average F1-score

below 10%. An intriguing relationship emerges between false negatives and false positives: The four
SA tools (Securify2, Slither, SmartCheck, and CSA) focused on source code and attained elevated
Recall, which is attributed to their inherent technical constraints, which prioritize achieving a sound
detection by compromising the completeness [5]. However, it results in a trade-o�, manifesting in
diminished Precision and an increased number of false positives.

Take Slither as an example, despite utilizing advanced detection techniques involving data-�ow
and control-�ow analysis on the SlithIR, it still su�ers from unexpected false positives. A notable
instance is its detection logic for “Weak PRNG (Pseudorandom Number Generator)”, which refers
to compromised PRNG due to predictable or manipulable sources like using blockhash, with the
primary concern being the security risk from predictable outcomes. However, the detector imple-
mentation within Slither [53] utilizes Static Single Assignment (SSA) form to identify potentially
risky uses of the modulus operator when its left operand depends on block.timestamp, now, or
blockhash. Despite this sophisticated approach, it frequently misidenti�es benign code as vulnera-
ble (resulting in false positives) in practice. For instance, as shown in Listing 1, the seven instances
reported as “Weak PRNG” vulnerabilities in the PESA Token [7] were all false positives (L2, L5,
L8, L14, L17, L20, and L23). However, the code demonstrates benign applications of the modulus
operator for various logical operations, such as determining leap years (L1-L12) or extracting time
components from a timestamp (L13-L24). This false positive originates from the simplistic approach
of the detection heuristic for this vulnerability pattern, which lacks a nuanced understanding
necessary to di�erentiate between the use of the modulus operator in random number generation
and its benign use in straightforward arithmetic operations.
In contrast, SE tools including Mythril, Oyente, and Osiris, which analyze bytecode, tend to be

more precise when compared with these SA tools. The enhanced precision arises from the fact that
SE simulates speci�c code execution paths. However, while this o�ers a more meticulous analysis,
it can sometimes overlook vulnerabilities outside the simulated paths, particularly when utilizing
Depth-First Search (DFS) within constrained timeframes.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 65. Publication date: July 2024.



Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? 65:15

1 function isLeapYear(uint16 year) public pure returns (bool) {

2 if (year % 4 != 0) { // FP -1

3 return false;

4 }

5 if (year % 100 != 0) { // FP -2

6 return true;

7 }

8 if (year % 400 != 0) { // FP -3

9 return false;

10 }

11 return true;

12 }

13 function getHour(uint timestamp) public pure returns (uint8) {

14 return uint8 (( timestamp / 60 / 60) % 24); // FP -4

15 }

16 function getMinute(uint timestamp) public pure returns (uint8) {

17 return uint8 (( timestamp / 60) % 60); // FP -5

18 }

19 function getSecond(uint timestamp) public pure returns (uint8) {

20 return uint8(timestamp % 60); // FP -6

21 }

22 function getWeekday(uint timestamp) public pure returns (uint8) {

23 return uint8 (( timestamp / DAY_IN_SECONDS + 4) % 7); // FP -7

24 }

Listing 1. Examples of benign modulus operator usage incorrectly flagged as Weak PRNG vulnerabilities by
Slither in the PESA Token [7].

Finding 4: SAST tool e�ectiveness varies notably. CSA and Slither lead with F1-scores of 6.40%
and 2.38%, while Oyente and Manticore underperform. The quality of IR is crucial: detailed IRs
enhance accuracy, but SmartCheck’s approach leads to high false positives. SA (using source
code analysis) boosts Recall, while SE (using bytecode analysis) prioritizes Precision.

4.3 RQ3: Consistency Analysis

Detection consistency across vulnerability categories. Generally, these tools exhibited weak
detection capabilities across all categories, which can be inferred from the results in RQ1. Interest-
ingly, we still observed a signi�cant inconsistency in the detection capabilities of SAST tools across
various vulnerability categories, as displayed in Table 5. For instance, these tools exhibited more
e�ective detection rates for Access Control (30.31%) and Reentrancy (28.03%) vulnerabilities when
compared to other categories.

In contrast, the tools demonstrated weaker e�ectiveness in Storage & Memory (1.88%), Arithmetic

(7.05%), and Cryptographic (12.50%) categories. Notably, while all tools support Arithmetic vulnera-
bilities, they detected no more than 40% of them. The observed inconsistency also sheds light on
the distinct methodologies and detection focuses of di�erent SAST tools. For example, while most
tools detected an average of 16.23% Denial of Service vulnerabilities, Securify2 single-handedly
detected 64% of the 1,389 vulnerabilities. This di�erence suggests Securify2’s unique approach.
It combines both “compliance” and “violation” patterns for formal veri�cation instead of relying
solely on known sensitive signatures or heuristics. A prime example is its detection pattern for
“transfer() and send() with Hardcoded Gas Amount”. As depicted in Listing 2, Securify2 �rst
identi�es contexts where external calls are made (L2). For compliance, it veri�es if the ether amount
associated with a call is zero (L4-L7) or if the external call explicitly depends on the transaction’s
sender (i.e., msg.sender) (L10-L15). Finally, violations are �agged when these compliant conditions
are not met, signaling potential unrestricted ether �ows (L18-L22). However, the inherent drawback
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1 // Identifying relevant contexts via external calls

2 applicableInContext(callCtx) :- externalCall(call), ctxProvider.elementInContext(callCtx ,

call , _).

3 // Compliance check: Ether amount associated with a call is zero

4 compliantInContext(callCtx , "") :-

5 applicableInContext(callCtx), ctxProvider.elementInContext(callCtx , call , context),

6 callValue(call , amount),

7 valueOf ([amount , context], "0").

8 // Compliance check: External call depends on the transaction 's sender

9 compliantInContext(callCtx , "") :-

10 applicableInContext(callCtx),

11 someSender(senderCtx),

12 (

13 infoflow.instrMustDependOn(callCtx , senderCtx)

14 ).

15 // Violation rule: Non -compliant conditions , indicating potential unrestricted ether

flows

16 violationInContext(callCtx , "") :-

17 applicableInContext(callCtx), ctxProvider.elementInContext(callCtx , call , context),

18 callValue(call , value),

19 !zeroValue ([value , context ]),

20 !maybeCompliantInContext(callCtx).

Listing 2. Detection logic for unrestricted-ether-flow within Securify2.

Table 5. The number of detected vulnerabilities in each category. For each vulnerability category: AC: Access
Control, AR: Arithmetic, BM: Block Manipulation, CR: Cryptographic, DoS: Denial of Services, RE: Reentrancy,
S&M: Storage & Memory.

Tool AC AR BM CR DoS RE S&M

Securify2 909 0 1,602 0 883 236 0
Slither 1,306 10 1,123 1 69 1,228 3

SmartCheck 57 1 480 0 15 201 0
CSA 1,465 651 3,125 1 835 1,374 33

Manticore 0 0 0 0 0 0 0
Mythril 264 44 210 0 2 98 0
Osiris 1 326 4 0 0 47 0
Oyente 1 91 0 0 0 32 0

# Vulns in our benchmark 1,651 1,992 3,886 2 1,389 1,434 40

of Securify2 relying on hard-coded patterns, such as mul-after-div.dl [49], becomes evident when
faced with intricate arithmetic issues in real-world scenarios, especially in DeFi apps where diverse
factors intertwine, leading to potential miscalculations or undetected vulnerabilities.
Meanwhile, CSA and Slither led in detecting Reentrancy vulnerabilities (95.82% and 85.63%,

respectively). We found that Slither employs a heuristic-based method to detect potential reentrancy
vulnerabilities in smart contracts. By integrating 7 detectors for reentrancy detection [40, 52], it
systematically traverses the CFG of each implemented function, searching for patterns that could
indicate reentrancy, particularly scenarios where state variables are written after an external
call. However, Slither still has its limitations in detecting this category, especially when analyzing
contracts involving state variables. If the callee is a state variable controlled only by an administrator,
Slither might mistakenly report a non-existent vulnerability (false positive). Conversely, if the
callee is a state variable that can be in�uenced by anyone, Slither may overlook the vulnerability
(false negative).
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It is crucial for developers and researchers to recognize these strengths and shortcomings. This
comprehension can help guide further advancements in SA tools, ensuring that they continue to
evolve and o�er robust defenses against potential smart contract vulnerabilities.

Finding 5: There is a notable di�erence in detection rates across vulnerability categories.
Interestingly, they identi�ed more Access Control and Reentrancy vulnerabilities when com-
pared to those belonging to Storage & Memory, Arithmetic, and Cryptographic categories. This
inconsistency underscores their unique detection methodologies and the inherent challenges in
improving the coverage for diverse vulnerability types.

The combination of tools. Since none of the single tools performs well on our benchmark and each
tool has di�erent focuses, we tried to analyze the e�ectiveness improvement by tool combination.
① An inclusive combination strategy: Here, we selected and combined the top-performing tools in
terms of Recall: CSA (72.00%), Slither (36.18%), and Securify2 (34.92%) (see Figure 4). A vulnerability
is thereby considered found if at least one tool from the respective group was able to detect it.
Interestingly, our �ndings demonstrate that CSA and Securify2 e�ectively complement each other
in vulnerability detection. Speci�cally, as shown in Figure 4 (b), they identi�ed 91.5% (9,513/10,394)
compared to the best-performing single tool, CSA (72.00%). However, this improvement comes
at the cost of marking 36.77 percentage points more functions as potentially vulnerable (271,794
reported issues in total).

Finding 6: Applying an inclusive combination strategy, where a vulnerability is considered
found if detected by any tool, substantially raises Recall to 91.5%, albeit at the cost of decreasing
Precision to 2.67%.

② Majority voting strategy: The low Precision of single tools motivated us to explore consensus-
based approaches for potentially improving Precision. To this end, we adopted the “majority
voting” [28] strategy, excluding Manticore due to its inability to detect any vulnerabilities, and thus
considering the consensus among the remaining seven tools. This approach yielded a noteworthy
increase in Precision to 36.10% (717/1,986), with a corresponding improvement in the F1-score to
11.58%. Compared to the single tool with the highest Precision, CSA (3.35%), this consensus-based
approach signi�cantly improved Precision. However, Recall was reduced to 6.90%, which underlines
the trade-o� between Precision and Recall and the inherently conservative nature of the majority
voting strategy.

4,452 7283,032

CSA Slither

(a) CSA & Slither.

5,883 2,0291,601

CSA Securify2

(b) CSA & Securify2.

2,242 2,1121,518

Slither Securify2

(c) Slither & Securify2.

Fig. 4. Combination of SAST tools.

Table 6. Analysis duration of each tool.

Tool
Duration

Average (s) Total (s)

Securify2 49.7 446,741.0
Slither 16.6 149,165.3

SmartCheck 112.7 1,012,242.0
CSA 17.5 157,081.3

Manticore 1,547.6 13,898,788.1
Mythril 579.0 5,199,823.6
Osiris 51.7 464,279.6
Oyente 13.2 118,301.1

Finding 7: The majority voting among tools improves Precision to 36.10%, increases the F1-
score to 11.58%, but decreases Recall to 6.90%. This approach reduces SAST tools’ false alarms,
emphasizing the precision-recall trade-o�.
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4.4 RQ4: E�iciency Analysis

As illustrated in Table 6, it presents the average and total execution time of each tool when analyzing
the selected smart contracts. On average, it takes about 298.5 seconds for each tool to analyze a
contract. Among SA tools, Slither and CSA complete their analyses within 16.6 seconds and 17.5
seconds per contract on average, respectively, while SmartCheck tends to be less e�cient, taking
approximately 112.7 seconds on average. Notably, Securify2 demands more memory resources
during analysis than other tools, a factor that users with resource constraints should consider.
In contrast, SE tools require substantially more time to execute. Manticore and Mythril have

average analysis durations of 1, 547.6B and 579.0B , respectively. Oyente appears to be the fastest
tool, taking an average of just 13.2B to analyze a contract. However, this is primarily due to the
numerous compilation failures it encountered (8, 355/8, 981), as already shown in Table 4, which
caused it to exit immediately when encountering such issues. Similarly, although Osiris is not
as fast as Oyente, it is worth noting that it also had a signi�cant number of compilation failures
(8, 533/8, 981), which resulted in its relatively faster analysis time of 51.7B .

In general, SA tools are faster than SE tools due to state traversal challenges faced by the latter. SA
tools such as Securify2 and Slither, are faster due to their use of IR and the e�cient program analysis
techniques they employ. For instance, Securify2 transforms source code into an IR using the MLton
compiler, an optimizer for the Standard ML programming language [24]. Their faster execution time
makes these tools more suitable for analyzing extensive contract sets or time-sensitive application
scenarios. SE tools, such as Mythril, often have longer execution times due to their technical
nature, which explores all possible execution paths, leading to vast state space. This comprehensive
exploration, while time-consuming, allows SE tools to uncover intricate vulnerabilities and edge
cases, providing a deeper understanding of potential issues in smart contracts.

Finding 8: SA tools generally outpace SE tools in terms of execution speed. Slither and CSA
stand out with their swift scanning speed. In contrast, SE tools like Manticore and Mythril take
considerably longer due to their exhaustive detection nature. While SA tools o�er speed, SE
tools provide depth, uncovering complex vulnerabilities by exploring all possible execution
paths.

5 DISCUSSION

5.1 Implications

5.1.1 For Tool Developers. Based on our �ndings, we suggest the following improvements for SAST
tool developers: ① Handle compilation issues more robustly. Our analysis in § 4.1 shows that these
tools generally failed to perform analysis due to compilation issues. Future research should focus on
developing tools that can accommodate a wider range of compiler versions and handle compilation
issues more robustly. This may involve incorporating techniques such as partial compilation or
on-the-�y compiler version switching. By enhancing the compatibility of these tools with various
compiler versions, the e�ectiveness and reliability of smart contract analysis can be signi�cantly
improved. ② Improve Precision by re�ning detection implementation. As shown in § 4.2, existing
tools, including the commercial tool CSA, generally face a dilemma where they report numerous
issues when analyzing smart contracts. As depicted in § 4.3, one potential cause could be the heavy
reliance on pattern matching for detection. The coverage and accuracy of these prede�ned rules can
greatly in�uence e�ectiveness. Developers are expected to re�ne the detection rules by capturing
the exact semantics of existing vulnerabilities rather than merely using intuitive pattern-matching.
For instance, when detecting Reentrancy vulnerabilities, tools are expected to capture the state
changes rather than a simple search for call.value. ③ Focus on the interoperability of tools. The
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�ndings in § 4.3 demonstrate that some tools perform better in certain vulnerability categories
than others. Therefore, it is essential to consider the interoperability of di�erent tools, allowing
users to combine the strengths of multiple tools for a more comprehensive security analysis. This
can be achieved by adopting standardized input and output formats and developing frameworks
that facilitate the integration of multiple tools. ④ Improve the e�ciency of tools. Our study shows
that some tools, such as Manticore analyzed contracts much slower than expected (1,547.6 seconds
per contract), which can negatively impact their practical e�ectiveness. In particular, Manticore
does not support a customized max recursion depth setting for users when compared to the
other SE tools. To address this issue, developers should focus on optimizing tool performance
by implementing more e�cient algorithms, providing better resource management, and o�ering
user-con�gurable settings for �ne-tuning tool behavior based on speci�c requirements.

5.1.2 For Researchers. We encourage future research in smart contract security to: ① Propose

a more comprehensive and up-to-date taxonomy and develop a diverse benchmark. Taxonomies
facilitate benchmark construction and objective evaluation in the context of smart contracts’ devel-
opment. As smart contract technologies evolve, new vulnerability types may emerge, necessitating
a continuously updated, uni�ed, and comprehensive taxonomy. Simultaneously, we encourage the
development of a comprehensive and diverse benchmark for objectively evaluating SAST tools
in line with the evolving taxonomy. ② Call for a �exible IR design in SAST for smart contracts. As
discussed in § 4.2, Slither and Securify2’s compilation-based IR approach provides detailed analyses,
while SmartCheck’s direct transformation method, although resolving compilation challenges,
might lack depth. IR profoundly a�ects the Precision and success rate of SAST tools, emphasizing
the need for a balance between granularity and analysis success rate. To improve these tools,
developers could explore hybrid IR strategies that combine the strengths of both compilation-
based (IR) and direct transformation techniques. Continuous re�nement based on feedback and
benchmark performance, coupled with collaborative research, could pave the way for more robust
IR methodologies that capture code intricacies without compromising the analysis success rate.
③ Better balance Recall and Precision in SAST tools for smart contracts. Tools using SA generally
achieve higher Recall but su�er from false positives, while SE tools exhibit better Precision but are
limited by higher true positives due to their inherent technological limitations. Identifying e�ective
strategies for balancing Recall and Precision presents a challenge for future research in the �eld of
smart contract security analysis.

5.1.3 For Practitioners. For practitioners working with smart contract SAST tools, we o�er the
following practical guidance: ① Select tools carefully by considering their strengths and limitations.

Be aware that some tools may have limitations due to compilation issues and may not support the
latest compiler versions. ② The strategic application of multiple SAST tools, based on their unique

strengths, can cater to speci�c needs in vulnerability detection. As shown in § 4.3, tools demonstrate
diverse strengths, with Securify2 excelling in detecting Denial of Service vulnerabilities and Slither
displaying pro�ciency in Reentrancy issues. Importantly, the choice of combination strategy can
greatly impact the Precision-Recall balance.

5.2 Threats to Validity

5.2.1 External Validity. ① The �rst threat concerns the generalizability of our evaluation results,
speci�cally whether our �ndings can be applied to other SAST tools and datasets for Solidity smart
contracts. We mitigated it by collecting existing benchmarks plus 113 real-world BNB projects,
which contain validated vulnerabilities mapped and grouped into 45 unique vulnerability types in
our taxonomy. Furthermore, we selected eight state-of-the-art tools (seven open-source and one
commercial) that employ various techniques and are frequently used and/or evaluated in recent
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top-tier publications and prominent vendors. ② Another threat comes from the four collected
benchmarks. As discussed in § 3.3.1, we collected benchmarks with “labeled vulnerability types”
and labeled vulnerable functions based on their claimed types. During this process, we identi�ed
and labeled unclaimed vulnerabilities, such as 1,611 new vulnerabilities in the SolidiFI Benchmark
compared to their claimed 7,995. To address this, we thoroughly labeled additional vulnerabilities
for a comprehensive evaluation of the tools’ Precision. ③ The last threat concerns the skewed
distributionwithin our benchmark (§ 3.3.2). This skew could potentially bias the overall e�ectiveness
results. To mitigate it, we provide a detailed breakdown of the detection results on each vulnerability
type in Table 2, aiming to o�er a clearer insight into the tools’ e�ectiveness.
5.2.2 Internal Validity. ① A possible threat arises from mistakes in labeling and mapping for
ground truth and detection rules of the selected tools. To mitigate this, we collaborated with our
industry partner and engaged three security experts to label the ground truth at the function level,
a process that took a total of 7.5 person-months. Furthermore, three security auditing experts
independently mapped the ground truth and detection rules, discussing any con�icts in mapping
results until reaching an agreement, which required an additional 3.5 person-months. ② Another
threat involves the runtime parameters used during the execution of the tools, particularly the
one-hour timeout setting. We adopted this timeout based on recommendations in [44]. Notably,
our in-depth analysis on Manticore in § 4.2 highlighted its practicality: despite facing numerous
timeouts, a constraint-free rerun of Manticore on the SolidiFI benchmark led to analyzing only
36 out of 260 contracts, without any discoveries. This outcome, coupled with the analysis in § 4.4
and Table 6, a�rms the one-hour limit’s adequacy for most contracts.

6 CONCLUSION AND FUTURE WORK

This paper presents a comprehensive evaluation of eight SAST tools for Solidity smart contracts
including coverage, e�ectiveness, consistency, and e�ciency. We identify notable gaps in rule
coverage, with tools struggling to comprehensively support the evolving range of Solidity vulnera-
bilities. Critical issues include high false positives in static analysis/source-code-based tools and
symbolic execution/bytecode-based tools’ limited path coverage. We highlight the urgent need for
tool advancements to address compiler limitations and introduce more e�ective strategies, such
as partial compilation or version adaptability. The varied e�ectiveness across vulnerability types
suggests a potential for re�ning specialized tools. Emphasizing the need for improved detection
methods, we suggest exploring hybrid analysis for complex vulnerabilities like reentrancy. Future
research should consider improving the detection implementation by capturing the exact vulnerabil-
ity patterns and exploring sophisticated tool combination strategies, and e�ciency enhancements
(especially for Manticore) to bolster SAST tool performance. Our insights guide tool enhancement
e�orts, contributing to the security of the blockchain ecosystem.
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